Nonlinear least-squares method for the inverse droplet coagulation problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLeast – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملLEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT
Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.
متن کاملGeneralized Nonlinear Inverse Problems Solved Using the Least Squares Criterion
The aim of physical sciences is to discover the minimal set of parameters which completely describe physical systems and the laws relating the values of these parameters to the results of any set of measurements on the system. A coherent set of such laws is named a physical theory. To the extent that the values of the parameters can only be obtained as a results of measurements, one may equival...
متن کاملAn Efficient Algorithm for the Separable Nonlinear Least Squares Problem
The nonlinear least squares problem miny,z‖A(y)z + b(y)‖, where A(y) is a full-rank (N + `)× N matrix, y ∈ Rn, z ∈ RN and b(y) ∈ RN+` with ` ≥ n, can be solved by first solving a reduced problem miny‖ f (y)‖ to find the optimal value y∗ of y, and then solving the resulting linear least squares problem minz‖A(y∗)z + b(y∗)‖ to find the optimal value z∗ of z. We have previously justified the use o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.88.012138